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Measurements by Freymuth & Uberoi (1971) of the terms in the transport equation 
for the temperature variance in a plane turbulent wake indicated approximate 
equality for the three components of the temperature dissipation, thus indicating 
isotropy for that quantity. This result was in sufficient disagreement with the results 
obtained in several other turbulent shear flows to warrant further measurements of 
the temperature dissipation in the wake. The present measurements indicate that the 
dissipation is larger than the isotropic value by about 50 % near the wake centreline 
and nearly 100 % near the region of maximum production. The magnitude of this ratio 
is similar to that obtained in other turbulent shear flows. The present measured ratio 
of total dissipation to isotropic dissipation leads to a satisfactory closure of the 
temperature variance budget for our experiments and also for the plane-wake 
measurements of Fabris (1974). It is concluded that the temperature dissipation is 
not isotropic. 

1. Introduction 
(0 is the temperature fluctuation) in a plane wake 

can be approximated to (e.g. Freymuth & Uberoi 1971, hereinafter referred to as I) 
The transport equation for 

aF -aF 1 a -  
ax ay 2ay 

1u -++e-+- -ve2+N= 0. 

U, is the free-stream velocity, p i s  the mean temperature relative to ambient, v is 
the velocity fluctuation in the lateral y-direction (the coordinate system is shown in 
the inset of figure l) ,  while N is the average temperature dissipation defined as 

where a is the thermal diffusivity. 
An important experimental result obtained in I, where all the terms in (1 )  were 

measured in the self-preserving region of the wake, was that the three components 
of N were approximately equal, indicating support for local isotropy. In this case N 
is equal to its isotropic value Ni ,  

The correctness of (3) seemed enhanced by the fact that relation (1) was reasonably 
satisfied by the measurements. Further, Freymuth & Uberoi (1973) assumed relation 
(3) and also obtained a reasonable closure for ( 1 )  in the self-preserving region of the 
wake of a sphere. 
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There have now been several attempts to determine the three components of N 
in different shear flows. Defining K ,  = (aO/ay)2//o’ and K ,  = (ae/az)s/(ae/az)z, 
Sreenivasan, Antonia & Danh (1977) found, in the log region of a turbulent boundary 
layer, average values of K ,  and K, equal to about 1.19 and 1.46 respectively. 
Verollet’s (1972) measurements in the inner region of a turbulent boundary layer 
indicated values of K ,  and K ,  that increased from about unity near the edge of the 
log region to about 2.39 and 2.04 respectively closer to the wall. Tavoularis & Corrsin 
(1981) considered a quasi-homogeneous turbulent shear flow with a constant 
temperature gradient and obtained K ,  x K ,  x 1.83. A similar result was obtained 
by Antonia, Brown & Chambers (1983) in the self-preserving region of a turbulent 
plane jet, with Kl x K ,  x 1.5 at the centreline. The above results, although in 
disagreement with (3), also gave adequate closures of the budgets of $@ in the various 
flows. It was clear then that re-evaluation and re-measurement of the dissipation 
terms in the plane wake were warranted. 

In  all the cited investigations, ae/ax was evaluated using Taylor’s hypothesis, 
namely 

where 0 is the mean velocity in the x-direction. A recent direct experimental 
confirmation of (4) in a plane jet by Browne, Antonia & Rajagopalan (1983) suggests 
that this assumption should be adequate in general. A more likely cause of difficulty 
is the measurement of the spatial derivatives ae/ay and ae/az. With the exception 
of Verollet’s (1972) measurements, which were made using the correlation approach, 
these derivatives have been obtained by forming the difference A0 between temperature 
signals from a pair of parallel cold wires. There are several errors associated with the 
use of such an arrangement (e.g. Mestayer & Chambaud 1979; Tavoularis & Corrsin 
1981; Browne, Antonia & Chambers 1983; Browne, Antonia & Rajagopalan 1983), 
the most important error being the experimental uncertainties in static calibrations 
of the wires for small wire separations. There is also a need to extrapolate 
distributions of (A8/Ay)2 and to determine their ‘ correct’ values. Since only 
one separation was used in I ,  it is possible that the results presented for (ae/ay)z and 
(ae/az)2 are incorrect. 

In  the present investigation, the budget of $@ is determined in the self-preserving 
region of a two-dimensional turbulent wake, with special attention being paid to the 
measurement of dissipation. Experimental conditions, described in $ 2, were designed 
to be similar to those of I. Experimental results are discussed in $3 in the context 
of those of I. Detailed measurements of turbulence quantities in a two-dimensional 
turbulent wake have been published by Fabris (l974,1979a, b). These measurements 
enabled the calculation of all the terms in (1) except N, since only (M/az)e was 
obtained. Results for Fabris’ budget are also presented in $3. 

2. Experimental arrangement and conditions 
Experiments were carried out in a non-return blower-type wind tunnel with a 

350 x 350 mm working section, 2.4 m long. Two-dimensionality of the flow and the 
absence of longitudinal vortices in the working section were established and checked 
prior to these experiments. Also the floor of the working section was slightly tilted 
(by 20 mm in 2.4 m) to maintain a zero presure gradient, the maximum variation 
in static pressure being 0.1 % of the dynamic pressure. 
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Cylinder diameter, d mm 
Free-stream velocity, U ,  m/s 
Reynolds number, based on d, R, = U ,  d / v  
Centreline values at position of 
detailed measurements: 
Location, xld 
Kolmogorov microscale, L, mm 
Taylor - microscale, A mm 

Reynolds number based on Taylor microscale 
& U l ( %  ) 

(independent, of x) 
R, = Ayd/v 

Mean-velocity defect, U, m/s 
Mean-temperature excess, T, "C 
Mean-velocity defect half-width, L mm 

Present 
experiments 

2.67 
6.70 

1170 

420 
0.45 
5.2 
1.6 

36 

0.36 
0.82 

12.3 

Experiments 
of Freymuth 

& Uberoi 
(1971) 

2.8 
6.10 

950 

1140 
0.9 
9.9 
0.92 

31 

0.21 
1.14 

20.3 

TABLE 1. Summary of experimental conditions 

Experiments 
of 

Fabris 
(1974) 

6.26 
6.46 

N 2700 

400 
0.66 

1.47 
10.5 

67 

0.367 
0.34 

30.5 

The wake-generating body was a stainless-steel tube of 2.67 mm outer diameter 
mounted horizontally in the mid-plane of the working section and 20 cm after the 
start of the working section. Electric heating of 100 W provided temperature as a 
passive marker of the flow in the self-preserving region. Details of the experimental 
conditions for these experiments and for those of I and Fabris (1974) are contained 
in table 1. The difference (table 1)  in the values of A, L,, U,,, T,, L between the present 
experiment and I reflect differences in the heating conditions and measurement 
locations. In I, a heating input of 250 W was used and measurements were made at 
x/d = 1140. For the present experiment a smaller amount of heating seemed 
preferable, and, to maintain a satisfactory signal-to-noise ratio for the temperature 
fluctuation, a smaller value of x/d was then necessary. The choice of 420 for x/d 
appeared to be a reasonable compromise ; our experiments indicated approximate 
self-preservation from x/d x 200, although the experiments of LaRue t Libby (1974) 
indicated that self-preservation is only achieved at x/d x 400. 

Velocity fluctuations and mean values were measured using 5 pm diameter 
P e l 0  % Rh hot wires, 0.9 mm long, with DISA 55M anemometers. As appropriate, 
a single wire was used for u (the velocity fluctuation in the longitudinal x-direction) 
while an X-wire, with wires separated by about 0.9 mm, was used in the (2, y)-plane 
for u and v and in the (2, z)-plane for u and w. For measurements of the longitudinal 
velocity derivative, required for the determination of A and L,, a single wire 
(2.5 pm Pt) of length 0.4 mm was used. 

Temperature measurements were made using 0.63 pm dimeter PtrlO% Rh cold 
wires operated with in-house constant-current anemometers supplying 0.1 mA. Wire 
lengths in the range 0.4-1 mm were used for correlation and derivative measurements. 
For the measurements of 8, a cold wire was located about 0.5 mm in front of the 
wire-crossing point of an X-probe. To avoid any possible interference of the unetched 
wire stubs with the X-probe, a 1 mm long cold wire was used. For the two-point 
temperature-correlation measurements, two cold wires, mounted on different probes, 
were located in the same (y, 2)-plane parallel to each other and to the z-axis. Their 
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separation in the y- and z-directions was controlled by traversing mechanisms with 
a least count of 0.01 mm. Initial separations were measured, using a theodolite, with 
an accuracy estimated a t  kO.02 mm. 

After appropriate gain and offset all fluctuating signals were filtered (f, = 2000 Hz) 
and sampled (f, = 4000 Hz) directly into a computer using an l l -bi t  plus-sign A/D 
converter. All processing was done on the same computer using constants carefully 
obtained from velocity, temperature and yaw calibrations. Mean quantities from the 
anemometers were determined using a small data-logging system operating at a 
sampling frequency of 10 Hz. 

3. Results and discussion 
The production, diffusion and dissipation terms in (1 )  were obtained directly from 

measured quantities. Use was made of self-preservation to calculate the advection 
term. The self-preserving form for @ is given by 

- 
e2 = Ghh(r), 

where T, is the centreline value of T a n d  q = y/L, L being the value of y where the 
velocity defect is half its centreline value U,. The gradient ap/ax can then be inferred 
from the streamwise variations of 7;,, L and from the distributions of h and its 
derivative h’. 

Mean and r.m.s. velocity and tcmperature profiles measured in the range 
100 < x/d < 600 indicated that self-preservation was satisfied approximately for 
x/d 2 200. The centreline variations of L, U, and T, for x/d 2 200 were given 
approximately by 

and 

- L = 0.20(:+ 125)’, 

- ” = 1.28 (:+ 125) * 

d 
-1 

u, 
-1 

- T, = 23.34(z-k 125) ’ 
Tref 

(7) 

For convenience, the reference temperature qer, relative to ambient, is identified with 
the value of T, a t  x/d = 420. Relations (5) and (6) yield values of 4.27 x andO.054 
for dL/dx and U,/Ul  a t  x/d = 420, justifying the ‘thin shear layer’ and ‘small 
velocity defect ’ approximations which have been made in obtaining ( 1 ) .  There was 
no discernible departure from zero for the correlations UW and (w is the velocity 
fluctuation in the z-direction) a t  any location in the wake, consistent with the 
approximation of two-dimensionality in (1). 

The distributions of h, T, v0, v02were obtained by applying cubic-spline least-squares 
fits to experimental values. For the derivatives h’, aT/ay and a#&, the least-squares 
fits to  h, Tand v82 were differentiated numerically, and further least-squares fits were 
applied to the derivative data. Self-preserving forms for ( U ,  - o)/ U,, 0 being the 
mea3velocity in the x-direction, and FIT, are shown in figure 1. Self-preserving forms 
for P / T ,  and a / U ,  T,are presentedl in figures 2 and 3 respectively. The present 
distributions of (Ul- U)/U, ,  82L/T, and a / U ,  %-are in closer agreement with 
those of Fabris (1974) than of I. The distribution of v0/U,T,, calculated from the 
mean-enthalpy equation using approximate self-preservation and the relations (5), 
(6), (7), is in reasonable agreement with the present measured distribution of a / U ,  T, 
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FIGURE 1. The coordinate system and mean-velocity defect and mean-temperature-excess profiles 
in self-preserving coordinates. -, present ; - - -, I ; - -, Fabris (1974). 

T 

FIGURE 2. Distributions of root-mean-square temperature @IT,. 
-, present; - - - , I ;  - -, Fabris (1974). 

(the uncertainty of this measurement was estimated to be about f 12 %). A t  7 = 1, 
the measured distribution is smaller than the calculation by about 10 %. In  contrast, 
measured and calculated distributions reported in I indicated that, at 7 N 1, the 
calculation was larger than measurement by about 35 o/o. Since information analogous 
to (5), (6), (7) was not available, a calculation of 3 relevant to Fabris’ experimental 
conditions was not made. 

The component ~(?JO/?JZ)~  of the dissipation N was obtained from measurements 
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FIGURE 3. Distributions of lateral heat flux Z/U,T,. -, present; - - -, I; - -, Fabris (1974); 
- - - -, calculation using the mean-enthalpy equation, self-preservation and relations (5), (6), (7). 

of (i38/at)a using one cold wire andTaylor’s hypothesis, (4). The other two components, 
which involve gradients ae/ay and aO/az, were estimated from the behaviour of 
temperature sutocorreletions for small separations of two cold wires in the y- or 
z-directions. The autocorrelation function pa is defined by 

where r is the time delay and /3 stands for either x, y or z. With the assumption of 
homogeneity, the limiting behaviour of p ,  at T = 0 and small values of A/3 can be 
approximated (e.g. Batchelor 1953), to  order (A/3)4, by 

where A, is the temperature Taylor microscale, defined as 

Using (8), the relative magnitudes of the Taylor microscales, and thus the relative 
magnitudes of the dissipation components (ae/i3/3)z, can be estimated from the 
curvatures of the p,  versus A/3 curves near the origin. Distributions of p,, for relatively 
small values of A/3, are shown in figure 4, at two values of 7. The curvatures of the 
pa distributions in figure 4 indicate that K ,  > K l .  This inequality, more marked 
for 7 N 1.8 than 7 = 0, contrasts with the approximate equality of the three 
mean-square derivatives found in I. 

The magnitude of A, was obtained from measurements of @ and (aO/i3x)2. To 
determine the appropriate magnitude of A,, B = y or z ,  (8) was used to calculate A, 
for each separation A/3. This calculation shows that there is a small range of A/3 over 
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FIGURE 4. Spatial correlations of temperature at 7 = 0 and 7 x 1.8 (x/d = 420). A/3 is 
the wire separation and L, the Kolmogorov microscale. -, /3 = x; 0, y; 0, z. 

FIGURE 5. Log-log representation of (1 -p  ) as a function of A/3/LK at 
7 = 1.8 (x/d = 420). 0, /f= y; 0,  z. 
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FIQURE 6. Distributions of h,.L and of the ratios K ,  and K ,  at xfd = 420. 

which A, is approximately constant ; the equivalent geometrical determination of A, 
consists of plotting (1 -p,) versus A/3 on a log-log plot and identifying the extent of 
the data, which exhibit a slope of +2 .  Such a construction, shown in figure 5 for 
7 N- 1.8, indicates a small range of A/?/LK which satisfies the parabolic behaviour 
of (8). The particular values for A, and A, inferred from figure 2 are equal to about 
3.24 mm and 3.87 mm respectively. For comparison, the magnitude of A, is equal to  
about 5.30 mm. The departure of tho data from the expected slope for very small 
values of ( l - p p )  was also observed in other flows (e.g. the temperature data of 
Antonia et al. 1984, and the velocity data of Rose 1966 and Lawn 1971). Sources of 
inaccuracy a t  small separations have been discussed by Antonia et al. (1984), but i t  
should also be noted that, apart from the uncertainty in determining AP, the expected 
maximum of unity for p, is not quite achieved in practice in view of the inevitable 
contamination by electronic noise. Signal-to-noise ratios, on an r.m.s. basis, for the 
present measurements were typically equal to about 10. Such noise contamination 
reduced the maximum measured value of pa to  about 0.95; correcting the measured 
correlation for the noise in each of the two measuring circuits and for any correlation 
between the noise components in the different circuits, restored the maximum value 
of pa to  almost 1.0. The possibility of error, due to  the assumed homogeneity in (8), 
was checked a t  7 N 1 where the mean velocity gradient is largest. The coefficient prl 
was measured for both positive and negative values of Ay but the distribution of p, 
versus IAyI remained unchanged, so that A ,  was unaffected. Similarly, we found that, 
independently of 7, A, was independent of the direction of Az, an observation which 
supports the assumed two-dimensionality of the mean flow. 

The ratio of AJL, plotted in figurc 6, is approximately constant near the wake 
centreline but increases to  a maximum near 7 = 1.8. It should be noted that, although 
a correction due to electronic noise was applied to the (ae/ax)2 measurements, no 
wire-length correction was made, since the wire length was comparable with or 
smaller than the Kolmogorov microscale. Using the values of A, shown in figure 6 
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FIGURE 7 .  Budget of :@ at x / d  = 420. All terms are normalized. -, production; - - - -, 
diffusion; - - -, advection; - - -, isotropic dissipation; 8, total measured dissipation; - -, 
dissipation required for closure. 

0.02 
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0 1 2 

II 

FIQURE 8. Budget of calculated using the data of Fabris (1974) at x/d = 420. -, production ; 
- - - -, diffusion; - - -, advection; - - -, isotropic dissipation; 0, total dissipation obtained 
by using the present distribution of NIN,;  - -, dissipation required for closure. 

and the values of A, and A, inferred from the spatial-correlations procedure, 
distributions of A l / A i ,  i.e. K,, and Al/A:, i.e. K,, are also plotted in figure 6. These 
ratios are relatively constant near 7 = 0 but their magnitudes are significantly larger 
than the locally isotropic value of unity. For 7 > 1, the departure from isotropy 
increases further, especially for K,, and is largest near 7 = 1.5. 

All terms in (1) are plotted in figure 7 after normalization by L / U , G .  The 
qualitative behaviour of each of the terms is in agreement with that of the 
corresponding terms in the budget presented in I and also in the budget (figure 8) 
calculated using the data of Fabris (1974, 1979a). The significant point of difference 
is the ratio of the total-to-isotropic dissipation, which for the present budget is about 
1.5 near the centreline and reaches a maximum of about 2.0 near 7 = 1.4. In  contrast, 
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0 1 2 3 4 
APILK 

FIGURE 9. Dependence of r.m.8. temperature differences on the normalized separation Ay/LK or 
AZ/LK. 0, B = y ;  0 ,  B = Z ;  - , linear extrapolation of data for Ay/L, 2 3;  - - , linear 
extrapolation of data for Az/L, 2 3. Arrows indicate values obtained from correlation method. 

I indicated a value of unity, almost independently of 11. For the present budget, the 
overall imbalance (the dissipation required for closure is shown in figures 7 and 8) 
is negligible near the wake centreline (7 5 0.8) and remains satisfactorily small in the 
region of 7 > 0.8. It is of interest to note in figures 7 and 8 that the diffusion is more 
important than the advection at the wake centreline and is slightly larger than the 
advection at the location where the production (and also dissipation) is largest. The 
discrepancy between N and Ni is also largest at this location. The plausibility of the 
present values of N / N i  is further demonstrated in figure 8; it is clear from this figure 
that the isotropic dissipation measured by Fabris (1974) is insufficient to enable 
closure of the budget. When the present values of the ratio N / N ,  are applied to Fabris’ 
isotropic dissipation, the resulting dissipation distribution agrees reasonably well 
with that required for closure. 

It is difficult to provide an explanation for 1’s corroboration of isotropy in the 
context of the three components of N and the success of I in closing the budget. This 
success is especially puzzling in view of the technique used by these authors to 
determine the derivatives with respect to y and z ;  as noted earlier, the separation 
between the wires was fixed and the derivatives calculated using differences AOlAy 
and AOIAz. We estimate that this wire separation, at T,I = 0, was equal to about 0.9LK. 
Our measured distributions, figure 9, of (A0/Ay)* versus AylL, and (A0/Az)2f v e r m  
AzlL, indicate that, for this separation, the measured r.m.8. values are larger than 
the values obtained using the correlation technique by factors of about 2.6 and 2.2 
respectively, thus further increasing the anisotropy. 

A linear extrapolation to zero separation of the data for which Ax and Ay are both 
larger than 3LK, as shown in figure 9, gives satisfactory agreement, within the 
uncertainty of the extrapolation, between the extrapolated values and those deter- 
mined by the correlation method. There is, however, no rigorous justification for such 
an extrapolation. In view of the theoretical basis of the correlation approach, we have 
preferred to adopt the correlation method in the present paper. 

4. Concluding remarks 
Although the qualitative form of each of the terms in the present budget of 

is similar to that presented by I, the present measurements do not corroborate those 
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authors’ observation that the three components of dissipation satisfy isotropy. 
Mean-square values of transverse derivatives of temperature are larger than those 
for the longitudinal derivative, the total dissipation being larger than the isotropic 
dissipation by an amount varying from 50 Yo near the centreline to almost 100 % near 
the wake half-width. The measured total dissipation yields a satisfactory closure of 
the budget for p. When the present measured ratio of total-to-isotropic dissipation 
is applied to the isotropic-dissipation measurements of Fabris ( 1974), a satisfactory 
closure is also obtained for the $F budget calculated using Fabris’ data. 

The anisotropy of the temperature dissipation appears to be a universal feature 
of sheared scalar fields and seems independent of the Reynolds number. It is 
important that this non-equality be taken into account in models of turbulent heat 
transfer. It should, however, be emphasized that equality between the mean-square 
values of first-order temperature derivatives represents only one test for isotropy. 
Antonia & Browne (1983), from measurements in a turbulent plane jet, pointed out 
that second-order temperature derivatives provide a more sensitive test of isotropy 
of the very fme-scale fluctuations than first-order derivatives. 
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